
Robot Sensor Language

Stephen Leakc
National Burcau of Standards

Abstract

.RSL-(Robot Sensor Language) i s a data-driven,semi-interprctcd, hierarchical, user extensible, robot
task description language. It provides four levels of task decomposition, with structures and syntax
specialized for each level. The user can add commands for new sensors appmpriate to the task at hand.
The language i s highly interactive, easing debugging and algorithm development. I t m y also be used as
an interface to a task planning system.

Introduction

RSL i s a response to the need for a robot language that supports userdesigned sensors, along with
hierarchical task decomposition and real -time execution. It i s written in RCS, the N B S - developed
Real-time Control System', and xuns on 8086 based Multibus hardware.

RSL i s a high-level language, specialized for sensor-interactive robot tasks. It is data-driven in the
sense that all data relating to a particular task i s separated from the control process that executes thetask. T h i s makes programming different tasks a matter of changing data files, rather than changing
control code, leading to a much more reliable control system. Data describing a robot task i s of two
types: environmental data, such as object sizes and positions; and algorithms, which give information
about what squence of steps are needed to complete the task. RSL supports representation of both
types of data in high-level source code. In order to speed execution, this high-level source code i s first
compiled into a linked l ist representation stored in common memory, which i s then interpreted by
control levels. Any piece ofRSL source code can be edited andre-compiled at any time; the linked lists
are updated, with garbage collection, and the result can be executed immediately. I t i s not necessary to
reampile an entire application to make small changes.

RSL supports hierarchical task decomposition. The high-level language i s explicitly hierarchical,
decomposing tasks into paths, path-points, and trajectories. The compiler and control levels also follow
this hierarchy, and are highly modular. This shucturc makes i t easy to add new sensors, or new
functional capabilities at any level.

The rest of the paper is organized as follows: section 1 gives an introduction to RSL structures, and
introduces a short example task used to illustrate the language. Section 2 discusses the implementation
of the compiler and control levels. Section 3 gives a brief overyiew of somc applications that have used
RSL. Finally, section 4 concludes with a discussion of future work.

Authbfs cumm ddrrss: NUi0n.l Blauu of S t m d d s , Bldg. 220. m B127, Gaithasburg. MD 20899

r

Robot Sensor Language

Task decomposition

It i s helpful to use a simple example to illuarate the task decomposition. consider moving a box from a
truck to a conveyor, using a forklift end-effector quipped with sonar range sensors and proximitySensors.The first level of task decomposition (called the task level), yields the following sequence of
steps:

1) Move the fork 00 thevicinity ofthe truck.
2) Using long range sensors, find the approximate position of the box on the truck, then use short

3) Lift the box clear of the truck.
4) Move tonear the conveyax
5) Gently set the box on the conveyor. (The position of the conveyor i s known to the robot

controller, so no sensors arc needed for this step.)
6) Remove the tines from under the box, andmove clear.

range sensors to align the fark tines with the box, andinsat the tines under the box.

The next level of decomposition is the path level. Each of the steps in the task level descriptions is, in
fact, apath. Continuing the example, the path for step 2 decomposes into:

1) Scan across the truck, reading the long range sonars.
2) Goto 20 inches (as measured by sonar) in front of the closest point seen in the scan.
3) Move to the pickup side of the box.
4) Use severai sonars to align with the floor of the truck, and the side ofthe box.
5) Insert the tines under the box, usingproximity sensors to avoid hard collisions.

Each step in a path i s called apath-point. The names path andpath-point arc derived from the notion of
thru-points along apath used to go around obstacles, but the mcaning here is generalized to include the
use of sensors invarious ways. A prc-planned path is a simple case, whm no se~ls~sam used.

The last level of decomposition i s the trajectory level. Each path -pint decomposes into one or more
trajectories. For example, step 1in the path above decomposes simply into a Cartesian straight-line
trajectory, while step 4 involves several sensor-servo& rotations.

Each level of decomposition i s now discusscd in moredetail,starting from tht bottom.

Trajectory

A trajectory is an algorithm for commandlll’ g the position of the endeffector as a function of time. I t
may be calculated solely on the basis of apriori information (as in ” goto the truck I

t), or incorporate
sensor feedback (as in align to the box).The trajectory algorithms typically take parameters
describing the goal pose and limits on the velocity and acceleration. Sensor-based algorithms will have

. more parameters describing how to use the sensor data RSL provides four trajectory commands:
Cartesian straight -line and joint interpolated for point-tu-point motion, and two others for real-time
Cartesian sensor scrvo2.me user may addother trajectory command^ as ntedtd.

Patb-points

A path-point i s an algorithm for a single motion of the end-efftctor, usually involving a sensor. For
example, path-point number 2 above commands a motion towards a point, and uses the sonar to
measure the distance remaining. When the distance drops to 20 inches, the motion is halted Th i s is a
motion terminated by a sensor condition. On the other hand, the path-point that aligns the fork with the
flaer i s sensor controllcd: the sonars give the distance to the floor, and a rotation is computed that

2

Robot Sensor Language

moves towads alignment. The orientation of the fork is seryotd to the floor Orientation.

There i s typically a group of path-point commands for each type of sensor. For example, sonars are
used inscan,range, and align path-points. Each path-point command takes parameters which identify
the individual sensor to use, and give information on how to use the Sensor data. For example, thealign
path-point command has parameters identifying two sonars, arotation axis, and a goal orientation.

The base RSL system provides only the goto path-point command, which moves the end-effector to a
given location, using no sensors. Users must add other path-points to use their sensors. Since the
language was designed with user extensions inmind, this i s easy to do.

Paths

A path is an algorithm for a simple task, such as moving between locations or grasping objects. The
algorithm may be simply apath in space that guarantees no collisions, or it may involve sensors to help
locate the object whenitsposit ion is not accurately known. In the above example, the first path uses no
sensors - i t simply moves to the truck. The second path uses sensors to find the box. For simplicity,
paths consist of a linear sequence of path-points. Any branching or looping must be done within a
path-point, or at the task level.

Individual paths art identified by a path type andparameters. The parameters typically consist of named
locations, objects, and tools that are involved in the task. The path type gives the intended purpose of

- the path, and i s used in the task level decomposition. There are six path types provided by RSL;
move-to, approach -pickup, depart-pickup, approach -release, depart -release, and
named. The fmt five path types are used in the TRANSFER task, discussed below. They
correspond to the paths in the example: step 1 i s a move-to path, step 2 i s approach-pickup, step 3
i s depart-pickup, step 4 i s move-to, step 5 i s approach -release, and step 6 i s depart -release.

The sixth path type,named, i s provided mainly for debugging; i t provides a simple way to test small
pieces of more complex paths. I t also provides a way to program simple tasks that do not need a task
level of decomposition.

The path parameters arc handled in a way that allows a single path definition to be used for several
related tasks. For example, the approach-pickup path that finds the box on the truck could also be
used to find the box anywhere else, or it could find different sized boxes, since the location of the truck
and the size of the box are path level parameters.

Tasks

For the task level, the tern "task" i s used in a specific way; RSL tasks arc algorithms for high-level
functions such as mfcrr ing pallets from a truck to a conveyor, or &burring machined parts.

All tasks arc decomposed into a sequence of path types; the specific path to be executed is identified by
. the path type and the parameters of the current task. The user provides paths for each path

typeEparameter combination required.

The base RSL system provides two task,MOVE -TO and TRANSFER. MOVE-TO simply moves
the robot to a god location, by executing the move-to path that COMCC~Sthe current location to the
goal. TRANSFER transfers objects from a source location to a goal location. T h i s i s the task used in
the example. The sequence of paths for the TRANSFER task is;

I

3

Robot Sensor Language

TRANSFER object, souI%c locarion, goallocrztion
1) move-to object ,cuwent loctuion, source locotion
2) approash-pickup object, source location
3) &part-pickup object, source location
4) mope-& object ,source kation, goal louuion
5) approach-rtlease object ,goal location
6) depurt -release object,goal location

Th i s sequence decomposts the transfer task into six stcps, each of which is programmed by the user as
a path. The sequence is repeated if either the source or the destination i s an array. Note that the user
may treat each object /location combination Mcrently, using different sensor based strategies, while
maintaining the high-level TRANSFER task definition. For example, transferring a large box from a
table would involve using sonar sensors to find the box, while transferring a small machined pan from
the same table would involve a vision sensor. The user would provide two different sets of paths,
identified by the object type.The TRANSFER command would automatically select the appropriate
path, based on the object type in the task paramem.

The user can add other tasks to RSL, to fit the user's application.

Environmental data

RSL provides ways of representing poses (position and orientation) of locations and objects.
Locations can be defined in absolute world coordinates, or relative to a bast location, using movetables.
Movetables provide a convenient user syntax for specifying relative transforms; the transform i s built
up out of simple steps, consisting of a vector translation, or a rotation about a single axis. Some
information about sizes of objects is also represented, for use by a gripping end-cffector. Locations can
be grouped into amys, for use inpalletizing opt ions.

RSL i s implemented using the N B S Real-time Control System (RCS).RCS i s a micro -processor
based system for real-time control applications. I t runs on Multibus based 8086 / 8087 hardwart. The
operating system i s based on FORTH, but has been significantly extended to support multiple
processors, a mid-level high-speed compiled language, inter -processor communications, and common
memory. I t inherits from FORTH the user-friendly features of interactive execution and incremental
compilation, making debugging a simple and easy process.

RCS is designed to support ahit~svchicalcontrol s m c m , with al l levels of the hierarchy executing in
parallel, in a cyclicmannd.A system clock defmes a cycle time, and each level executesitscontrol

' means that each level in the hierarchy i s executing the
ai execution in which ahigher

process once each cycle. This Eyclic
. appmpriau control algcnithm at all times. Th is is contrasted with

level routine&a lower-levelmutint, and the higher level waia=lowcr level to complete before
i tmumes executing. One advantage of cyclic execution is reaction time, since each level samples all
inputs each cycle, the system can react to an external event, at any level, in one cycle. This could be
done with i n m p t s ina sequential system, but it i s hard to terminate the intempt routine in a way that
aborts the current routine cleanly, andeven harder topredict all of the possible interactions.

For example, consider step 2 in the example task above. The Path-point level is monitoring the sonar
sensors, and updating the command to the Trajectory level as often as possible. Meanwhile, the
Trajectory level is controlling the fork's acceleration and velocity, to maintain smooth motion. The two
levels execute simultaneously. In a sequential system, the Path-point level would have to read the

4

Robot Sensor Language

sensor, issue a command to the Trajectory level, and then wait until the command was completed before
reading the sensar again.

Another advantage ofhicrarchcal design and cyclic execution ismodularity; each level has well defrned
interfaces to sensors andother levels. As long as the interface design ismet, p y level can be modified
independently of the others. Also, any or all levels can be single stepped while the othcrs rvt running,
to help in debugging.
RSL consists of a compiler and an interpreter (see figurc 1).The interpreter consists of four control
levels running on three processors; a fourth processor zu~lsthe compiler and acts as a system supMvisor
and user interface. No external development system is needed, a l l programming is done on the final
application system. The RSL compiler compiles RSL source code describing locations, movetables,
objects and paths into a linked list representation, which i s stored in common memory. The conml
levels then access the common memory to retrieve the data as needed.

The four control levels in the inttrprtter comspond to the four levels of task decomposition. TASK,
PATH, and PATH-POINT execute on one pmcessor. The trajectory level i s split into two modules,
CARTESIAN and JOINT, which execute on separate processors, to achieve faster cycle rates. The
Joint Servo level in figurc 1 i s assumed to be provided by the robotmanufacturer.
The input to TASK is a user command. This command i s &composed according to the task definition,
which results in a sequence of paths. One path at a time i s commanded to PATH; as each path i s
completed, anew one is commanded,

PATH accepts path commands, retrieves all the path parameters from common memory, and
decomposes the path into path-points, following the path definition compiled into common memory. I t
commands one path-point at a time to PATH-POINT, waiting for each to complete.

PATH-POINT accepts path-point commands from PATH, retrieves the path-point parameters from
common memory, and executes the path-point algorithm. The path-point algorithm typically involves
reading a sensor, calculating an object pose bascd on the sensor data, and updating the parameters in the
current trajectory command

CARTESIAN accepts trajectory commands hmPATH-POINT, andretrieves the trajtctary parameters
from common memory. It executes the trajectory algorithm, and outputs a pose for the robot wrist,
once every control cycle. JOINT accepts the wristpose,convcrts it to joint coordinates, and commands
it to the joint servos.

The cycle time i s 28 milli -seconds for a Unimation PUMA 760 or 4000, and 24 milli-seconds for an
AmericanMERLIN. These times are dettnnined by the servo rates in the tworobots.Note that only the
trajectory level must generate new output evcry cycle; the upper levels arc f k c to takc as much time as
necessary to process sensor data, or decide on the next task decomposition step.

RSL is uscr-extensible in many ways. It is designed to allow addition of new trajectories, path-points,
paths, and tasks.The user adds routines to the appropriate level of the interpreter to extcutc the control
algorithm, and also adds routines to the compiler that compile the parameters for the algorithms into
common memory. Note that the compiler is ygy simple compared to a typical computer language
compiler; the syntax and smctllres used in RSL arc very simple, so adding to the RSL compiler i s
straight-fommd.

5

Robot Sensor Language

RSL source code User commands

RSL COMPILER

TASK LEVEL

common memory

- -
PATH-POINT LEVEL

I Joint Servo

Figure 1.RSL control levels and common memory structures.

6

Robot Sensor Language

RSL has been used successfidly in three applications to date. The first is the Field Materiel Handling
Robot system, which uses a fork with sensors (very much like the example above) to off-load boxes
of ammunition (and othcrmatcriel) hmtnrcks3. RSL was first used toprogram amockup of this task

- on a PUMA 760, then the mockup was transferred to a UNIMATION 4OOO robot. Many path-points
w m added to the base system, to handle all the sensors.
A second application is a cleaning and&burring workstation in the A u M Manufacturing Research
Facility at NBS4. RSL is used toprogram a PUMA 760 to use air-powered debwing tools to deburr
machined part edges. A separate workstation level (running on a S U N), encodes the part geomeny
into a path, with parameters indicating the toolto use, feed rates, etc. The path i s down-loaded to the
RSL system, w h m it i s compiled andrun.Path-points wen added to control avise,various debuning
tools, and a tool quickchange. A &burring task and associated paths were also added. The task level
accepts commands from the workstation level, and commands paths that &burr the parts, changing
tools as required.

The third application is a satellite docking mockup*. The RSL system reads a solid-state camera,
determines the position of a satellite (as indicated by four LEDs on the satellite), and drives the robot
endzffector mdock with thesatellite.

RSL does not support an explicit world model; all knowledge about how the world works, and in
particular how sensors and end-effectors interact with objects, i s implicit in the tasks and paths
provided by the progammer. This makes i t difficult to use more than one sensor at a time. A world
model will make it possible to combine data from several sensors, by comparing the sensor readings
with pdictions, and smoing the model to the sensorss.

A second arca for future work i s task representation. Currently, RSL uses SMACRO code to express
the task level, and linear sequences of path-points to express the path level. (SMACRO is the computer
programming language provided by RCS: it i s similar to C, but less powcrfui).The path level needs to
be more flexible, in particular to allow for mor conditions. On the other hand, the task level should be
more rcstrictive. The power provided by SMACRO (or C) code i s deceptive; it i s too easy to write
code that works for a particular instance, but i s not generic enough to be used for several tasks, or
robust enough to work reliably. There should be a task description language that allows adquate
flexibility, while guiding the programmer into writing code that works, and is generic and maintainable.
The path smcture provided by RSLis a first attempt at such a language.

Another reason for developing a good task description language is that i t would make an excellent
interface between a planning system and the control system. The &burring workstation application
mentioned above has shown that this approach i s wonh pursuing. Having a more powerful task
description language available willmake it easier to incorporate task level planning for more complex

. tasks.
Acknowledgments

The author would like to thank Sandor Szabo andKarlMurphy for many useful id-and for using
RSL in the applications. Tony Barbera andML Fikgerald designed and developed the fmt versions of
RCS, andprovided much support during the development of RSL.

7

Robot Sensor Language

References

1. me RCS U m R e f m n c e . to bepublished.

2. ' StephenLeakc," Cartesian Trajectory Algorithms far Real-time Sensor S&o ",to be published.

3. Harry G. McCain, Roger D.Kilmcr,Sandor Szabo, Azizollah Abrishamian, " A Hierarchically
- Controlled Autonomous Robot For Heavy PayloadMilitary Field Applications ". Intelligent

Autonomous Systems, An International Conference, Amsterdam, The Netherlands, 8-11
December,1986.

4. Harry G. McCain, Roger D.Kilmcr,KarlN. Murphy, "Development of aCleaning and &burring
Workstation for the AMRF",Rocdings of the Deburring & Surface Conditioning Conference,
Sept 23-26, 1985, Chicago, Illinois.

5. Ernest W. Kent, James S. Albus, "Servoed world models as interfaces between robot control
S Y SU ~ Sandst-data",Roboti~a(1984) volume 2, pp 17-25.

6. A. J. Barbera, M.L. Fitzgerald, J.S. Albus, L.S. Haynes, " RCS: The N B S Real-Time Control
System ",Pmceedinqs o f the Robots 8 Conference and Eaposition,vol2, pp 19-1 through 19-33,
Detroit,Michigan, June, 1984.

8

